Tight Piecewise Convex Relaxations for Global Optimization of Optimal Power Flow

Mowen Lu, Harsha Nagarajan, Russell Bent, Sandra D. Eksioglu, Scott J. Mason

Since the alternating current optimal power flow (ACOPF) problem was introduced in 1962, developing efficient solution algorithms for the problem has been an active field of research. In recent years, there has been increasing interest in convex relaxations-based solution approaches that are often tight in practice. Based on these approaches, we develop tight piecewise convex relaxations with convex-hull representations, an adaptive, multivariate partitioning algorithm with bound tightening that progressively improves these relaxations and, given sufficient time, converges to the globally optimal solution. We illustrate the strengths of our algorithm using benchmark ACOPF test cases from the literature. Computational results show that our novel algorithm reduces the best-known optimality gaps for some hard ACOPF cases.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment