We study the problem of sampling from a distribution where the negative logarithm of the target density is $L$-smooth everywhere and $m$-strongly convex outside a ball of radius $R$, but potentially non-convex inside this ball. We study both overdamped and underdamped Langevin MCMC and prove upper bounds on the time required to obtain a sample from a distribution that is within $\epsilon$ of the target distribution in $1$-Wasserstein distance. For the first-order method (overdamped Langevin MCMC), the time complexity is $\tilde{\mathcal{O}}\left(e^{cLR^2}\frac{d}{\epsilon^2}\right)$, where $d$ is the dimension of the underlying space. For the second-order method (underdamped Langevin MCMC), the time complexity is $\tilde{\mathcal{O}}\left(e^{cLR^2}\frac{\sqrt{d}}{\epsilon}\right)$ for some explicit positive constant $c$. Surprisingly, the convergence rate is only polynomial in the dimension $d$ and the target accuracy $\epsilon$. It is however exponential in the problem parameter $LR^2$, which is a measure of non-logconcavity of the target distribution.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok