Anti-lock Brake System for Integrated Electric Parking Brake Actuator Based on Sliding-mode Control

Dongliang Wang, Yiyong Yang, Wei Yu, Jiawang Yong, Xiaoxu Dong

Integrated electric parking brake (iEPB) is popularizing on passenger cars due to its easier operation and automatic functions. As a parking brake, EPB have to act as the secondary brake system in case of hydraulic brake failure. To guarantee the stability and safety of a car during iEPB braking, the rear slip ratio has to be controlled accurately within the optimized value to get the shortest brake distance without undesired loss of control. In this paper, a sliding-mode controller (SMC) is investigated to achieve rear-wheel anti-lock brake control, which is robust against uncertainties and disturbance of the parameters. And a sliding-mode observer (SMO) is present to estimate the load torque of d.c. motor and calculate the brake torque. The tyre/road friction coefficient estimator is designed to obtain the optimal rear slip ratio timely. The simulation model of iEPB system is initially constructed in AMESim and the vehicle model is built in MATLAB/Simulink, and the complete system is co-simulated by these two software simultaneously with different road conditions. Simulation results show that the proposed observer and estimator are feasible. This study may provide a useful method to realize rear slip ratio control so that the safety and stability of vehicle could be improved significantly in specified condition

Knowledge Graph



Sign up or login to leave a comment