Estimating Traffic Conditions At Metropolitan Scale Using Traffic Flow Theory

Weizi Li, Meilei Jiang, Yaoyu Chen, Ming C. Lin

The rapid urbanization and increasing traffic have serious social, economic, and environmental impact on metropolitan areas worldwide. It is of a great importance to understand the complex interplay of road networks and traffic conditions. The authors propose a novel framework to estimate traffic conditions at the metropolitan scale using GPS traces. Their approach begins with an initial estimation of network travel times by solving a convex optimization program based on traffic flow theory. Then, they iteratively refine the estimated network travel times and vehicle traversed paths. Last, the authors perform a bilevel optimization process to estimate traffic conditions on road segments that are not covered by GPS data. The evaluation and comparison of the authors' approach over two state-of-the-art methods show up to 96.57% relative improvements. The authors have further conducted field tests by coupling road networks of San Francisco and Beijing with real-world GIS data, which involve 128,701 nodes, 148,899 road segments, and over 26 million GPS traces.

Knowledge Graph



Sign up or login to leave a comment