The Responsibility Quantification (ResQu) Model of Human Interaction with Automation

Nir Douer, Joachim Meyer

Intelligent systems and advanced automation are involved in information collection and evaluation, in decision-making and in the implementation of chosen actions. In such systems, human responsibility becomes equivocal. Understanding human casual responsibility is particularly important when intelligent autonomous systems can harm people, as with autonomous vehicles or, most notably, with autonomous weapon systems (AWS). Using Information Theory, we develop a responsibility quantification (ResQu) model of human involvement in intelligent automated systems and demonstrate its applications on decisions regarding AWS. The analysis reveals that human comparative responsibility to outcomes is often low, even when major functions are allocated to the human. Thus, broadly stated policies of keeping humans in the loop and having meaningful human control are misleading and cannot truly direct decisions on how to involve humans in intelligent systems and advanced automation. The current model is an initial step in the complex goal to create a comprehensive responsibility model, that will enable quantification of human causal responsibility. It assumes stationarity, full knowledge regarding the characteristic of the human and automation and ignores temporal aspects. Despite these limitations, it can aid in the analysis of systems designs alternatives and policy decisions regarding human responsibility in intelligent systems and advanced automation.

Knowledge Graph



Sign up or login to leave a comment