Sharp error estimates for spline approximation: explicit constants, $n$-widths, and eigenfunction convergence

Espen Sande, Carla Manni, Hendrik Speleers

In this paper we provide a priori error estimates in standard Sobolev (semi-)norms for approximation in spline spaces of maximal smoothness on arbitrary grids. The error estimates are expressed in terms of a power of the maximal grid spacing, an appropriate derivative of the function to be approximated, and an explicit constant which is, in many cases, sharp. Some of these error estimates also hold in proper spline subspaces, which additionally enjoy inverse inequalities. Furthermore, we address spline approximation of eigenfunctions of a large class of differential operators, with a particular focus on the special case of periodic splines. The results of this paper can be used to theoretically explain the benefits of spline approximation under $k$-refinement by isogeometric discretization methods. They also form a theoretical foundation for the outperformance of smooth spline discretizations of eigenvalue problems that has been numerically observed in the literature, and for optimality of geometric multigrid solvers in the isogeometric analysis context.

Knowledge Graph



Sign up or login to leave a comment