A sequential guiding network with attention for image captioning

Daouda Sow, Zengchang Qin, Mouhamed Niasse, Tao Wan

The recent advances of deep learning in both computer vision (CV) and natural language processing (NLP) provide us a new way of understanding semantics, by which we can deal with more challenging tasks such as automatic description generation from natural images. In this challenge, the encoder-decoder framework has achieved promising performance when a convolutional neural network (CNN) is used as image encoder and a recurrent neural network (RNN) as decoder. In this paper, we introduce a sequential guiding network that guides the decoder during word generation. The new model is an extension of the encoder-decoder framework with attention that has an additional guiding long short-term memory (LSTM) and can be trained in an end-to-end manner by using image/descriptions pairs. We validate our approach by conducting extensive experiments on a benchmark dataset, i.e., MS COCO Captions. The proposed model achieves significant improvement comparing to the other state-of-the-art deep learning models.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment