Sequence Generation with Guider Network

Ruiyi Zhang, Changyou Chen, Zhe Gan, Wenlin Wang, Liqun Chen, Dinghan Shen, Guoyin Wang, Lawrence Carin

Sequence generation with reinforcement learning (RL) has received significant attention recently. However, a challenge with such methods is the sparse-reward problem in the RL training process, in which a scalar guiding signal is often only available after an entire sequence has been generated. This type of sparse reward tends to ignore the global structural information of a sequence, causing generation of sequences that are semantically inconsistent. In this paper, we present a model-based RL approach to overcome this issue. Specifically, we propose a novel guider network to model the sequence-generation environment, which can assist next-word prediction and provide intermediate rewards for generator optimization. Extensive experiments show that the proposed method leads to improved performance for both unconditional and conditional sequence-generation tasks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment