On subexponential running times for approximating directed Steiner tree and related problems

Marek Cygan, Guy Kortsarz, Bundit Laekhanukit

This paper concerns proving almost tight (super-polynomial) running times, for achieving desired approximation ratios for various problems. To illustrate, the question we study, let us consider the Set-Cover problem with n elements and m sets. Now we specify our goal to approximate Set-Cover to a factor of (1-d)ln n, for a given parameter 0= 2^{n^{c d}}, for some constant 0= exp((1+o(1)){log^{d-c}n}), for any c>0, unless the ETH is false. Our result follows by analyzing the work of Halperin and Krauthgamer [STOC, 2003]. The same lower and upper bounds hold for CST.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment