Semantic Role Labeling for Knowledge Graph Extraction from Text

Mehwish Alam, Aldo Gangemi, Valentina Presutti, Diego Reforgiato Recupero

This paper introduces TakeFive, a new semantic role labeling method that transforms a text into a frame-oriented knowledge graph. It performs dependency parsing, identifies the words that evoke lexical frames, locates the roles and fillers for each frame, runs coercion techniques, and formalises the results as a knowledge graph. This formal representation complies with the frame semantics used in Framester, a factual-linguistic linked data resource. The obtained precision, recall and F1 values indicate that TakeFive is competitive with other existing methods such as SEMAFOR, Pikes, PathLSTM and FRED. We finally discuss how to combine TakeFive and FRED, obtaining higher values of precision, recall and F1.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment