Automated Local Fourier Analysis (aLFA)

Karsten Kahl, Nils Kintscher

Local Fourier analysis is a commonly used tool to assess the quality and aid in the construction of geometric multigrid methods for translationally invariant operators. In this paper we automate the process of local Fourier analysis and present a framework that can be applied to arbitrary, including non-orthogonal, repetitive structures. To this end we introduce the notion of crystal structures and a suitable definition of corresponding wave functions, which allow for a natural representation of almost all translationally invariant operators that are encountered in applications, e.g., discretizations of systems of PDEs, tight-binding Hamiltonians of crystalline structures, colored domain decomposition approaches and last but not least two- or multigrid hierarchies. Based on this definition we are able to automate the process of local Fourier analysis both with respect to spatial manipulations of operators as well as the Fourier analysis back-end. This automation most notably simplifies the user input by removing the necessity for compatible representations of the involved operators. Each individual operator and its corresponding structure can be provided in any representation chosen by the user.

Knowledge Graph



Sign up or login to leave a comment