DropFilter: A Novel Regularization Method for Learning Convolutional Neural Networks

Hengyue Pan, Hui Jiang, Xin Niu, Yong Dou

The past few years have witnessed the fast development of different regularization methods for deep learning models such as fully-connected deep neural networks (DNNs) and Convolutional Neural Networks (CNNs). Most of previous methods mainly consider to drop features from input data and hidden layers, such as Dropout, Cutout and DropBlocks. DropConnect select to drop connections between fully-connected layers. By randomly discard some features or connections, the above mentioned methods control the overfitting problem and improve the performance of neural networks. In this paper, we proposed two novel regularization methods, namely DropFilter and DropFilter-PLUS, for the learning of CNNs. Different from the previous methods, DropFilter and DropFilter-PLUS selects to modify the convolution filters. For DropFilter-PLUS, we find a suitable way to accelerate the learning process based on theoretical analysis. Experimental results on MNIST show that using DropFilter and DropFilter-PLUS may improve performance on image classification tasks.

Knowledge Graph



Sign up or login to leave a comment