Semi-Supervised Semantic Image Segmentation with Self-correcting Networks

Mostafa S. Ibrahim, Arash Vahdat, Mani Ranjbar, William G. Macready

Building a large image dataset with high-quality object masks for semantic segmentation is costly and time consuming. In this paper, we introduce a principled semi-supervised framework that only uses a small set of fully supervised images (having semantic segmentation labels and box labels) and a set of images with only object bounding box labels (we call it the weak set). Our framework trains the primary segmentation model with the aid of an ancillary model that generates initial segmentation labels for the weak set and a self-correction module that improves the generated labels during training using the increasingly accurate primary model. We introduce two variants of the self-correction module using either linear or convolutional functions. Experiments on the PASCAL VOC 2012 and Cityscape datasets show that our models trained with a small fully supervised set perform similar to, or better than, models trained with a large fully supervised set while requiring ~7x less annotation effort.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment