Deep Learning of Turbulent Scalar Mixing

Maziar Raissi, Hessam Babaee, Peyman Givi

Based on recent developments in physics-informed deep learning and deep hidden physics models, we put forth a framework for discovering turbulence models from scattered and potentially noisy spatio-temporal measurements of the probability density function (PDF). The models are for the conditional expected diffusion and the conditional expected dissipation of a Fickian scalar described by its transported single-point PDF equation. The discovered model are appraised against exact solution derived by the amplitude mapping closure (AMC)/ Johnsohn-Edgeworth translation (JET) model of binary scalar mixing in homogeneous turbulence.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment