slimIoT: Scalable Lightweight Attestation Protocol For the Internet of Things

Mahmoud Ammar, Mahdi Washha, Gowri Sankar Ramachandran, Bruno Crispo

The Internet of Things (IoT) is increasingly intertwined with critical industrial processes, yet contemporary IoT devices offer limited security features, creating a large new attack surface. Remote attestation is a well-known technique to detect cyber threats by remotely verifying the internal state of a networked embedded device through a trusted entity. Multi-device attestation has received little attention although current single-device approaches show limited scalability in IoT applications. Though recent work has yielded some proposals for scalable attestation, several aspects remain unexplored, and thus more research is required. This paper presents slimIoT, a scalable lightweight attestation protocol that is suitable for all IoT devices. slimIoT depends on an efficient broadcast authentication scheme along with symmetric key cryptography. It is resilient against a strong adversary with physical access to the IoT device. Our protocol is informative in the sense that it identifies the precise status of every device in the network. We implement and evaluate slimIoT considering many factors. On the one hand, our evaluation results show a low overhead in terms of memory footprint and runtime. On the other hand, simulations demonstrate that slimIoT is scalable, robust and highly efficient to be used in static and dynamic networks consisting of thousands of heterogenous IoT devices.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment