Lightweight Lipschitz Margin Training for Certified Defense against Adversarial Examples

Hajime Ono, Tsubasa Takahashi, Kazuya Kakizaki

How can we make machine learning provably robust against adversarial examples in a scalable way? Since certified defense methods, which ensure $\epsilon$-robust, consume huge resources, they can only achieve small degree of robustness in practice. Lipschitz margin training (LMT) is a scalable certified defense, but it can also only achieve small robustness due to over-regularization. How can we make certified defense more efficiently? We present LC-LMT, a light weight Lipschitz margin training which solves the above problem. Our method has the following properties; (a) efficient: it can achieve $\epsilon$-robustness at early epoch, and (b) robust: it has a potential to get higher robustness than LMT. In the evaluation, we demonstrate the benefits of the proposed method. LC-LMT can achieve required robustness more than 30 epoch earlier than LMT in MNIST, and shows more than 90 $\%$ accuracy against both legitimate and adversarial inputs.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment