We propose a probabilistic variant of Brill-Noether's algorithm for computing a basis of the Riemann-Roch space $L(D)$ associated to a divisor $D$ on a projective nodal plane curve $\mathcal C$ over a sufficiently large perfect field $k$. Our main result shows that this algorithm requires at most $O(\max(\mathrm{deg}(\mathcal C)^{2\omega}, \mathrm{deg}(D_+)^\omega))$ arithmetic operations in $k$, where $\omega$ is a feasible exponent for matrix multiplication and $D_+$ is the smallest effective divisor such that $D_+\geq D$. This improves the best known upper bounds on the complexity of computing Riemann-Roch spaces. Our algorithm may fail, but we show that provided that a few mild assumptions are satisfied, the failure probability is bounded by $O(\max(\mathrm{deg}(\mathcal C)^4, \mathrm{deg}(D_+)^2)/\lvert \mathcal E\rvert)$, where $\mathcal E$ is a finite subset of $k$ in which we pick elements uniformly at random. We provide a freely available C++/NTL implementation of the proposed algorithm and we present experimental data. In particular, our implementation enjoys a speedup larger than 6 on many examples (and larger than 200 on some instances over large finite fields) compared to the reference implementation in the Magma computer algebra system. As a by-product, our algorithm also yields a method for computing the group law on the Jacobian of a smooth plane curve of genus $g$ within $O(g^\omega)$ operations in $k$, which equals the best known complexity for this problem.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok