Assessing four Neural Networks on Handwritten Digit Recognition Dataset (MNIST)

Feiyang Chen, Nan Chen, Hanyang Mao, Hanlin Hu

Although the image recognition has been a research topic for many years, many researchers still have a keen interest in it[1]. In some papers[2][3][4], however, there is a tendency to compare models only on one or two datasets, either because of time restraints or because the model is tailored to a specific task. Accordingly, it is hard to understand how well a certain model generalizes across image recognition field[6]. In this paper, we compare four neural networks on MNIST dataset[5] with different division. Among them, three are Convolutional Neural Networks (CNN)[7], Deep Residual Network (ResNet)[2] and Dense Convolutional Network (DenseNet)[3] respectively, and the other is our improvement on CNN baseline through introducing Capsule Network (CapsNet)[1] to image recognition area. We show that the previous models despite do a quite good job in this area, our retrofitting can be applied to get a better performance. The result obtained by CapsNet is an accuracy rate of 99.75\%, and it is the best result published so far. Another inspiring result is that CapsNet only needs a small amount of data to get excellent performance. Finally, we will apply CapsNet's ability to generalize in other image recognition field in the future.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment