A Multi-variable Stacked Long-Short Term Memory Network for Wind Speed Forecasting

Sisheng Liang, Long Nguyen, Fang Jin

Precisely forecasting wind speed is essential for wind power producers and grid operators. However, this task is challenging due to the stochasticity of wind speed. To accurately predict short-term wind speed under uncertainties, this paper proposed a multi-variable stacked LSTMs model (MSLSTM). The proposed method utilizes multiple historical meteorological variables, such as wind speed, temperature, humidity, pressure, dew point and solar radiation to accurately predict wind speeds. The prediction performance is extensively assessed using real data collected in West Texas, USA. The experimental results show that the proposed MSLSTM can preferably capture and learn uncertainties while output competitive performance.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment