Forward Stability of ResNet and Its Variants

Linan Zhang, Hayden Schaeffer

The residual neural network (ResNet) is a popular deep network architecture which has the ability to obtain high-accuracy results on several image processing problems. In order to analyze the behavior and structure of ResNet, recent work has been on establishing connections between ResNets and continuous-time optimal control problems. In this work, we show that the post-activation ResNet is related to an optimal control problem with differential inclusions, and provide continuous-time stability results for the differential inclusion associated with ResNet. Motivated by the stability conditions, we show that alterations of either the architecture or the optimization problem can generate variants of ResNet which improve the theoretical stability bounds. In addition, we establish stability bounds for the full (discrete) network associated with two variants of ResNet, in particular, bounds on the growth of the features and a measure of the sensitivity of the features with respect to perturbations. These results also help to show the relationship between the depth, regularization, and stability of the feature space. Computational experiments on the proposed variants show that the accuracy of ResNet is preserved and that the accuracy seems to be monotone with respect to the depth and various corruptions.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment