Planning in Dynamic Environments with Conditional Autoregressive Models

Johanna Hansen, Kyle Kastner, Aaron Courville, Gregory Dudek

We demonstrate the use of conditional autoregressive generative models (van den Oord et al., 2016a) over a discrete latent space (van den Oord et al., 2017b) for forward planning with MCTS. In order to test this method, we introduce a new environment featuring varying difficulty levels, along with moving goals and obstacles. The combination of high-quality frame generation and classical planning approaches nearly matches true environment performance for our task, demonstrating the usefulness of this method for model-based planning in dynamic environments.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment