Secure Nested Codes for Type II Wiretap Channels

Ruoheng Liu, Yingbin Liang, H. Vincent Poor, Predrag Spasojevic

This paper considers the problem of secure coding design for a type II wiretap channel, where the main channel is noiseless and the eavesdropper channel is a general binary-input symmetric-output memoryless channel. The proposed secure error-correcting code has a nested code structure. Two secure nested coding schemes are studied for a type II Gaussian wiretap channel. The nesting is based on cosets of a good code sequence for the first scheme and on cosets of the dual of a good code sequence for the second scheme. In each case, the corresponding achievable rate-equivocation pair is derived based on the threshold behavior of good code sequences. The two secure coding schemes together establish an achievable rate-equivocation region, which almost covers the secrecy capacity-equivocation region in this case study. The proposed secure coding scheme is extended to a type II binary symmetric wiretap channel. A new achievable perfect secrecy rate, which improves upon the previously reported result by Thangaraj et al., is derived for this channel.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment