On Intra-Class Variance for Deep Learning of Classifiers

Rafal Pilarczyk, Wladyslaw Skarbek

A novel technique for deep learning of image classifiers is presented. The learned CNN models offer better separation of deep features (also known as embedded vectors) measured by Euclidean proximity and also no deterioration of the classification results by class membership probability. The latter feature can be used for enhancing image classifiers having the classes at the model's exploiting stage different from from classes during the training stage. While the Shannon information of SoftMax probability for target class is extended for mini-batch by the intra-class variance, the trained network itself is extended by the Hadamard layer with the parameters representing the class centers. Contrary to the existing solutions, this extra neural layer enables interfacing of the training algorithm to the standard stochastic gradient optimizers, e.g. AdaM algorithm. Moreover, this approach makes the computed centroids immediately adapting to the updating embedded vectors and finally getting the comparable accuracy in less epochs.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment