Deep Learning for Inverse Problems: Bounds and Regularizers

Jaweria Amjad, Zhaoyan Lyu, Miguel R. D. Rodrigues

Inverse problems arise in a number of domains such as medical imaging, remote sensing, and many more, relying on the use of advanced signal and image processing approaches -- such as sparsity-driven techniques -- to determine their solution. This paper instead studies the use of deep learning approaches to approximate the solution of inverse problems. In particular, the paper provides a new generalization bound, depending on key quantity associated with a deep neural network -- its Jacobian matrix -- that also leads to a number of computationally efficient regularization strategies applicable to inverse problems. The paper also tests the proposed regularization strategies in a number of inverse problems including image super-resolution ones. Our numerical results conducted on various datasets show that both fully connected and convolutional neural networks regularized using the regularization or proxy regularization strategies originating from our theory exhibit much better performance than deep networks regularized with standard approaches such as weight-decay.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment