When Collaborative Filtering Meets Reinforcement Learning

Yu Lei, Wenjie Li

In this paper, we study a multi-step interactive recommendation problem, where the item recommended at current step may affect the quality of future recommendations. To address the problem, we develop a novel and effective approach, named CFRL, which seamlessly integrates the ideas of both collaborative filtering (CF) and reinforcement learning (RL). More specifically, we first model the recommender-user interactive recommendation problem as an agent-environment RL task, which is mathematically described by a Markov decision process (MDP). Further, to achieve collaborative recommendations for the entire user community, we propose a novel CF-based MDP by encoding the states of all users into a shared latent vector space. Finally, we propose an effective Q-network learning method to learn the agent's optimal policy based on the CF-based MDP. The capability of CFRL is demonstrated by comparing its performance against a variety of existing methods on real-world datasets.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment