Learning-based Dynamic Cache Management in a Cloud

Jinhwan Choi, Yu Gu, Jinoh Kim

Caches are an important component of modern computing systems given their significant impact on performance. In particular, caches play a key role in the cloud due to the nature of large-scale, data-intensive processing. One of the key challenges for the cloud providers is how to share the caching capacity among tenants, under the circumstance that each often requires a different degree of quality of service (QoS) with respect to data access performance. The invariant is that the individual tenants' QoS requirements should be satisfied while the cache usage is optimized in a system-wide manner. In this paper, we introduce a learning-based approach for dynamic cache management in a cloud, which is based on the estimation of data access pattern of a tenant and the prediction of cache performance for the access pattern in question. We consider a variety of probability distributions to estimate the data access pattern, and examine a set of learning-based regression techniques to predict the cache hit rate for the access pattern. The predicted cache hit rate is then used to make a decision whether reallocating cache space is needed to meet the QoS requirement for the tenant. Our experimental results with an extensive set of synthetic traces and the YCSB benchmark show that the proposed method consistently optimizes the cache space while satisfying the QoS requirement.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment