Graph Warp Module: an Auxiliary Module for Boosting the Power of Graph Neural Networks in Molecular Graph Analysis

Katsuhiko Ishiguro, Shin-ichi Maeda, Masanori Koyama

Graph Neural Network (GNN) is a popular architecture for the analysis of chemical molecules, and it has numerous applications in material and medicinal science. Current lines of GNNs developed for molecular analysis, however, do not fit well on the training set, and their performance does not scale well with the complexity of the network. In this paper, we propose an auxiliary module to be attached to a GNN that can boost the representation power of the model without hindering with the original GNN architecture. Our auxiliary module can be attached to a wide variety of GNNs, including those that are used commonly in biochemical applications. With our auxiliary architecture, the performances of many GNNs used in practice improve more consistently, achieving the state-of-the-art performance on popular molecular graph datasets.

Knowledge Graph



Sign up or login to leave a comment