Online Multiclass Classification Based on Prediction Margin for Partial Feedback

Takuo Kaneko, Issei Sato, Masashi Sugiyama

We consider the problem of online multiclass classification with partial feedback, where an algorithm predicts a class for a new instance in each round and only receives its correctness. Although several methods have been developed for this problem, recent challenging real-world applications require further performance improvement. In this paper, we propose a novel online learning algorithm inspired by recent work on learning from complementary labels, where a complementary label indicates a class to which an instance does not belong. This allows us to handle partial feedback deterministically in a margin-based way, where the prediction margin has been recognized as a key to superior empirical performance. We provide a theoretical guarantee based on a cumulative loss bound and experimentally demonstrate that our method outperforms existing methods which are non-margin-based and stochastic.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment