Local minimax rates for closeness testing of discrete distributions

Joseph Lam-Weil, Alexandra Carpentier, Bharath K. Sriperumbudur

We consider the closeness testing (or two-sample testing) problem in the Poisson vector model - which is known to be asymptotically equivalent to the model of multinomial distributions. The goal is to distinguish whether two data samples are drawn from the same unspecified distribution, or whether their respective distributions are separated in $L_1$-norm. In this paper, we focus on adapting the rate to the shape of the underlying distributions, i.e. we consider a local minimax setting. We provide, to the best of our knowledge, the first local minimax rate for the separation distance up to logarithmic factors, together with a test that achieves it. In view of the rate, closeness testing turns out to be substantially harder than the related one-sample testing problem over a wide range of cases.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment