TableNet: An Approach for Determining Fine-grained Relations for Wikipedia Tables

Besnik Fetahu, Avishek Anand, Maria Koutraki

Wikipedia tables represent an important resource, where information is organized w.r.t table schemas consisting of columns. In turn each column, may contain instance values that point to other Wikipedia articles or primitive values (e.g. numbers, strings etc.). In this work, we focus on the problem of interlinking Wikipedia tables for two types of table relations: equivalent and subPartOf. Through such relations, we can further harness semantically related information by accessing related tables or facts therein. Determining the relation type of a table pair is not trivial, as it is dependent on the schemas, the values therein, and the semantic overlap of the cell values in the corresponding tables. We propose TableNet, an approach that constructs a knowledge graph of interlinked tables with subPartOf and equivalent relations. TableNet consists of two main steps: (i) for any source table we provide an efficient algorithm to find all candidate related tables with high coverage, and (ii) a neural based approach, which takes into account the table schemas, and the corresponding table data, we determine with high accuracy the table relation for a table pair. We perform an extensive experimental evaluation on the entire Wikipedia with more than 3.2 million tables. We show that with more than 88\% we retain relevant candidate tables pairs for alignment. Consequentially, with an accuracy of 90% we are able to align tables with subPartOf or equivalent relations. Comparisons with existing competitors show that TableNet has superior performance in terms of coverage and alignment accuracy.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment