Neural Fictitious Self-Play on ELF Mini-RTS

Keigo Kawamura, Yoshimasa Tsuruoka

Despite the notable successes in video games such as Atari 2600, current AI is yet to defeat human champions in the domain of real-time strategy (RTS) games. One of the reasons is that an RTS game is a multi-agent game, in which single-agent reinforcement learning methods cannot simply be applied because the environment is not a stationary Markov Decision Process. In this paper, we present a first step toward finding a game-theoretic solution to RTS games by applying Neural Fictitious Self-Play (NFSP), a game-theoretic approach for finding Nash equilibria, to Mini-RTS, a small but nontrivial RTS game provided on the ELF platform. More specifically, we show that NFSP can be effectively combined with policy gradient reinforcement learning and be applied to Mini-RTS. Experimental results also show that the scalability of NFSP can be substantially improved by pretraining the models with simple self-play using policy gradients, which by itself gives a strong strategy despite its lack of theoretical guarantee of convergence.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment