Progressive Generative Adversarial Networks for Medical Image Super resolution

Dwarikanath Mahapatra, Behzad Bozorgtabar

Anatomical landmark segmentation and pathology localization are important steps in automated analysis of medical images. They are particularly challenging when the anatomy or pathology is small, as in retinal images and cardiac MRI, or when the image is of low quality due to device acquisition parameters as in magnetic resonance (MR) scanners. We propose an image super-resolution method using progressive generative adversarial networks (P-GAN) that can take as input a low-resolution image and generate a high resolution image of desired scaling factor. The super resolved images can be used for more accurate detection of landmarks and pathology. Our primary contribution is in proposing a multistage model where the output image quality of one stage is progressively improved in the next stage by using a triplet loss function. The triplet loss enables stepwise image quality improvement by using the output of the previous stage as the baseline. This facilitates generation of super resolved images of high scaling factor while maintaining good image quality. Experimental results for image super-resolution show that our proposed multistage P-GAN outperforms competing methods and baseline GAN.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment