Information-theoretic and algorithmic thresholds for group testing

Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth, Philipp Loick

In the group testing problem we aim to identify a small number of infected individuals within a large population. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out positive iff at least one individual in the group is infected. With all tests conducted in parallel, what is the least number of tests required to identify the status of all individuals? In a recent test design [Aldridge et al.\ 2016] the individuals are assigned to test groups randomly, with every individual joining an equal number of groups. We pinpoint the sharp threshold for the number of tests required in this randomised design so that it is information-theoretically possible to infer the infection status of every individual. Moreover, we analyse two efficient inference algorithms. These results settle conjectures from [Aldridge et al.\ 2014, Johnson et al.\ 2019].

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment