Analysis of LoRaWAN Uplink with Multiple Demodulating Paths and Capture Effect

René Brandborg Sørensen, Nasrin Razmi, Jimmy Jessen Nielsen, Petar Popovski

Low power wide area networks (LPWANs), such as the ones based on the LoRaWAN protocol, are seen as enablers of large number of IoT applications and services. In this work, we assess the scalability of LoRaWAN by analyzing the frame success probability (FSP) of a LoRa frame while taking into account the capture effect and the number of parallel demodulation paths of the receiving gateway. We have based our model on the commonly used {SX1301 gateway chipset}, which is capable of demodulating {up to} eight frames simultaneously; however, the results of the model can be generalized to architectures with arbitrary number of demodulation paths. We have also introduced and investigated {three} policies for Spreading Factor (SF) allocation. Each policy is evaluated in terms of coverage {probability}, {FSP}, and {throughput}. The overall conclusion is that the presence of multiple demodulation paths introduces a significant change in the analysis and performance of the LoRa random access schemes.

Knowledge Graph



Sign up or login to leave a comment