Model-Based Reinforcement Learning for Whole-Chain Recommendations

Xiangyu Zhao, Long Xia, Dawei Yin, Jiliang Tang

With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems. In practical recommendation sessions, users will sequentially access multiple scenarios, such as the entrance pages and the item detail pages, and each scenario has its own recommendation strategy. However, the majority of existing RL-based recommender systems focus on optimizing one strategy for all scenarios or separately optimizing each strategy, which could lead to sub-optimal overall performance. In this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain recommendations. We propose a multi-agent reinforcement learning based approach (DeepChain), which can capture the sequential correlation among different scenarios and jointly optimize multiple recommendation strategies. To be specific, all recommender agents share the same memory of users' historical behaviors, and they work collaboratively to maximize the overall reward of a session. Note that optimizing multiple recommendation strategies jointly faces two challenges in existing model-free RL model \cite{feng2018learning}- (i) it requires huge amounts of user behavior data, and (ii) the distribution of reward (users' feedback) are extremely unbalanced. In this paper, we introduce model-based reinforcement learning techniques to reduce the training data requirement and execute more accurate strategy updates. The experimental results based on a real e-commerce platform demonstrate the effectiveness of the proposed framework.

Knowledge Graph



Sign up or login to leave a comment