Nicolas Le Roux

Tail averaging consists in averaging the last examples in a stream. Common techniques either have a memory requirement which grows with the number of samples to average, are not available at every timestep or do not accomodate growing windows. We propose two techniques with a low constant memory cost that perform tail averaging with access to the average at every time step. We also show how one can improve the accuracy of that average at the cost of increased memory consumption.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment