Optimal Transport on the Manifold of SPD Matrices for Domain Adaptation

Or Yair, Felix Dietrich, Ronen Talmon, Ioannis G. Kevrekidis

The problem of domain adaptation has become central in many applications from a broad range of fields. Recently, it was proposed to use Optimal Transport (OT) to solve it. In this paper, we model the difference between the two domains by a diffeomorphism and use the polar factorization theorem to claim that OT is indeed optimal for domain adaptation in a well-defined sense, up to a volume preserving map. We then focus on the manifold of Symmetric and Positive-Definite (SPD) matrices, whose structure provided a useful context in recent applications. We demonstrate the polar factorization theorem on this manifold. Due to the uniqueness of the weighted Riemannian mean, and by exploiting existing regularized OT algorithms, we formulate a simple algorithm that maps the source domain to the target domain. We test our algorithm on two Brain-Computer Interface (BCI) data sets and observe state of the art performance.

Knowledge Graph



Sign up or login to leave a comment