Enhancing Gradient-based Attacks with Symbolic Intervals

Shiqi Wang, Yizheng Chen, Ahmed Abdou, Suman Jana

Recent breakthroughs in defenses against adversarial examples, like adversarial training, make the neural networks robust against various classes of attackers (e.g., first-order gradient-based attacks). However, it is an open question whether the adversarially trained networks are truly robust under unknown attacks. In this paper, we present interval attacks, a new technique to find adversarial examples to evaluate the robustness of neural networks. Interval attacks leverage symbolic interval propagation, a bound propagation technique that can exploit a broader view around the current input to locate promising areas containing adversarial instances, which in turn can be searched with existing gradient-guided attacks. We can obtain such a broader view using sound bound propagation methods to track and over-approximate the errors of the network within given input ranges. Our results show that, on state-of-the-art adversarially trained networks, interval attack can find on average 47% relatively more violations than the state-of-the-art gradient-guided PGD attack.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment