Routing games are amongst the most studied classes of games. Their two most well-known properties are that learning dynamics converge to equilibria and that all equilibria are approximately optimal. In this work, we perform a stress test for these classic results by studying the ubiquitous dynamics, Multiplicative Weights Update, in different classes of congestion games, uncovering intricate non-equilibrium phenomena. As the system demand increases, the learning dynamics go through period-doubling bifurcations, leading to instabilities, chaos and large inefficiencies even in the simplest case of non-atomic routing games with two paths of linear cost where the Price of Anarchy is equal to one. Starting with this simple class, we show that every system has a carrying capacity, above which it becomes unstable. If the equilibrium flow is a symmetric $50-50\%$ split, the system exhibits one period-doubling bifurcation. A single periodic attractor of period two replaces the attracting fixed point. Although the Price of Anarchy is equal to one, in the large population limit the time-average social cost for all but a zero measure set of initial conditions converges to its worst possible value. For asymmetric equilibrium flows, increasing the demand eventually forces the system into Li-Yorke chaos with positive topological entropy and periodic orbits of all possible periods. Remarkably, in all non-equilibrating regimes, the time-average flows on the paths converge exactly to the equilibrium flows, a property akin to no-regret learning in zero-sum games. These results are robust. We extend them to routing games with arbitrarily many strategies, polynomial cost functions, non-atomic as well as atomic routing games and heteregenous users. Our results are also applicable to any sequence of shrinking learning rates, e.g., $1/\sqrt{T}$, by allowing for a dynamically increasing population size.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok