Stochastic learning control of inhomogeneous quantum ensembles

Gabriel Turinici

In quantum control, the robustness with respect to uncertainties in the system's parameters or driving field characteristics is of paramount importance and has been studied theoretically, numerically and experimentally. We test in this paper stochastic search procedures (Stochastic gradient descent and the Adam algorithm) that sample, at each iteration, from the distribution of the parameter uncertainty, as opposed to previous approaches that use a fixed grid. We show that both algorithms behave well with respect to benchmarks and discuss their relative merits. In addition the methodology allows to address high dimensional parameter uncertainty; we implement numerically, with good results, a 3D and a 6D case.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment