Sampling Humans for Optimizing Preferences in Coloring Artwork

Michael McCourt, Ian Dewancker

Many circumstances of practical importance have performance or success metrics which exist implicitly---in the eye of the beholder, so to speak. Tuning aspects of such problems requires working without defined metrics and only considering pairwise comparisons or rankings. In this paper, we review an existing Bayesian optimization strategy for determining most-preferred outcomes, and identify an adaptation to allow it to handle ties. We then discuss some of the issues we have encountered when humans use this optimization strategy to optimize coloring a piece of abstract artwork. We hope that, by participating in this workshop, we can learn how other researchers encounter difficulties unique to working with humans in the loop.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment