Errors-in-variables Modeling of Personalized Treatment-Response Trajectories

Guangyi Zhang, Reza Ashrafi, Anne Juuti, Kirsi Pietiläinen, Pekka Marttinen

Estimating the effect of a treatment on a given outcome, conditioned on a vector of covariates, is central in many applications. However, learning the impact of a treatment on a continuous temporal response, when the covariates suffer extensively from measurement error and even the timing of the treatments is uncertain, has not been addressed. We introduce a novel data-driven method that can estimate treatment-response trajectories in this challenging scenario. We model personalized treatment-response curves as a combination of parametric response functions, hierarchically sharing information across individuals, and a sparse Gaussian process for the baseline trend. Importantly, our model considers measurement error not only in treatment covariates, but also in treatment times, a problem which arises in practice for example when treatment information is based on self-reporting. In a challenging and timely problem of estimating the impact of diet on continuous blood glucose measurements, our model leads to significant improvements in estimation accuracy and prediction.

Knowledge Graph



Sign up or login to leave a comment