Torus computed tomography

Joonas Ilmavirta, Olli Koskela, Jesse Railo

We present a new computed tomography (CT) method for inverting the Radon transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a minimization problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution operator provides an admissible regularization strategy with a quantitative stability estimate. This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom. We also study the adjoint and the normal operator of the X-ray transform on the flat torus. The X-ray transform is unitary on the flat torus. We have implemented the Torus CT method using Matlab and tested it with simulated data with promising results. The inversion method is meshless in the sense that it gives out a closed form function that can be evaluated at any point of interest.

Knowledge Graph



Sign up or login to leave a comment