Conditional Monte Carlo for Reaction Networks

David F. Anderson, Kurt W. Ehlert

Reaction networks are often used to model interacting species in fields such as biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of their concentrations are typically modeled via a system of differential equations. However, when the counts of some species are small, the dynamics of the counts are typically modeled stochastically via a discrete state, continuous time Markov chain. A key quantity of interest for such models is the probability mass function of the process at some fixed time. Since paths of such models are relatively straightforward to simulate, we can estimate the probabilities by constructing an empirical distribution. However, the support of the distribution is often diffuse across a high-dimensional state space, where the dimension is equal to the number of species. Therefore generating an accurate empirical distribution can come with a large computational cost. We present a new Monte Carlo estimator that fundamentally improves on the "classical" Monte Carlo estimator described above. It also preserves much of classical Monte Carlo's simplicity. The idea is basically one of conditional Monte Carlo. Our conditional Monte Carlo estimator has two parameters, and their choice critically affects the performance of the algorithm. Hence, a key contribution of the present work is that we demonstrate how to approximate optimal values for these parameters in an efficient manner. Moreover, we provide a central limit theorem for our estimator, which leads to approximate confidence intervals for its error.

Knowledge Graph



Sign up or login to leave a comment