Topology-Preserving Deep Image Segmentation

Xiaoling Hu, Li Fuxin, Dimitris Samaras, Chao Chen

Segmentation algorithms are prone to make topological errors on fine-scale structures, e.g., broken connections. We propose a novel method that learns to segment with correct topology. In particular, we design a continuous-valued loss function that enforces a segmentation to have the same topology as the ground truth, i.e., having the same Betti number. The proposed topology-preserving loss function is differentiable and we incorporate it into end-to-end training of a deep neural network. Our method achieves much better performance on the Betti number error, which directly accounts for the topological correctness. It also performs superiorly on other topology-relevant metrics, e.g., the Adjusted Rand Index and the Variation of Information. We illustrate the effectiveness of the proposed method on a broad spectrum of natural and biomedical datasets.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment