The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, $\Theta(\log N)$ Nyquist-intervals, and total network bitrate $R_{net} = \Theta((\log N)^2)$ (per-sensor bitrate $\Theta((\log N)/N)$), the maximum pointwise distortion goes to zero as $D = O((\log N)^2/N)$ or $D = O(R_{net} 2^{-\beta \sqrt{R_{net}}})$. This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok