Maximal Scheduling in Wireless Networks with Priorities

Qiao Li, Rohit Negi

We consider a general class of low complexity distributed scheduling algorithms in wireless networks, maximal scheduling with priorities, where a maximal set of transmitting links in each time slot are selected according to certain pre-specified static priorities. The proposed scheduling scheme is simple, which is easily amendable for distributed implementation in practice, such as using inter-frame space (IFS) parameters under the ubiquitous 802.11 protocols. To obtain throughput guarantees, we first analyze the case of maximal scheduling with a fixed priority vector, and formulate a lower bound on its stability region and scheduling efficiency. We further propose a low complexity priority assignment algorithm, which can stabilize any arrival rate that is in the union of the lower bound regions of all priorities. The stability result is proved using fluid limits, and can be applied to very general stochastic arrival processes. Finally, the performance of the proposed prioritized maximal scheduling scheme is verified by simulation results.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment