The averaged control system of fast oscillating control systems

Alex Bombrun, Jean-Baptiste Pomet

For control systems that either have a fast explicit periodic dependence on time and bounded controls or have periodic solutions and small controls, we define an average control system that takes into account all possible variations of the control, and prove that its solutions approximate all solutions of the oscillating system as oscillations go faster. The dimension of its velocity set is characterized geometrically. When it is maximum the average system defines a Finsler metric, not twice differentiable in general. For minimum time control, this average system allows one to give a rigorous proof that averaging the Hamiltonian given by the maximum principle is a valid approximation.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment