We consider exact enumerations and probabilistic properties of ranked trees when generated under the random coalescent process. Using a new approach, based on generating functions, we derive several statistics such as the exact probability of finding k cherries in a ranked tree of fixed size n. We then extend our method to consider also the number of pitchforks. We find a recursive formula to calculate the joint and conditional probabilities of cherries and pitch- forks when the size of the tree is fixed.