Ramsey's theorem, in the version of Erd\H{o}s and Szekeres, states that every 2-coloring of the edges of the complete graph on {1, 2,...,n} contains a monochromatic clique of order 1/2\log n. In this paper, we consider two well-studied extensions of Ramsey's theorem. Improving a result of R\"odl, we show that there is a constant $c>0$ such that every 2-coloring of the edges of the complete graph on \{2, 3,...,n\} contains a monochromatic clique S for which the sum of 1/\log i over all vertices i \in S is at least c\log\log\log n. This is tight up to the constant factor c and answers a question of Erd\H{o}s from 1981. Motivated by a problem in model theory, V\"a\"an\"anen asked whether for every k there is an n such that the following holds. For every permutation \pi of 1,...,k-1, every 2-coloring of the edges of the complete graph on {1, 2, ..., n} contains a monochromatic clique a_1<...